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‘ ABSTRACT
i
This paper outlines results presented in [2] on the problem of
controlling bilinear distributed parameter systems. Specifically we give
results showing that one cannot control a bilinear distributed parameter
system to a full open neighborhood of an infinite dimensional state space.
Nevertheless we do present a result which allows identification of an

accessible set of states for a class of "hyperbolic" control systems.
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SIGNIFICANCE AND EXPLANATION

One way to view control of linear partial differential equations where
the controls enter as time varying coefficients is as a bilinear Aiutributad
system. For example the problem of controlling & rod via the axial load falls
in this class. This paper examines the possibility of using such controls to
steer the system from one 1oc@tion to another. It shows that this problem is

generally ill-posed but may be solved in certain exceptional circumstances.
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DISTRIBUTED BILINEAR SYSTEMS: POSITIVE AND NEGATIVE
RESULTS IN CONTROLLABILITY

M. Slemrod"

1. Distributed bilinear control systems

By a distributed bilinear control system we mean a system of the form
. )
w(t) = Aw(t) + p(t)Bu(t) , (1.1)
w(0) = w, € X , (1.2)
where A generates a c® semigroup of bounded linear operators on a
(possible complex) Banach space X, B : X + X is a bounded linear operator,
and p € L‘([O,T]; R) is a real valued control defined on a specified
interval {0,T].

Of particular interest in applications is the abstract “hyperbolic"

bilinear control system given by

u(t) + Au(t) + p(t)Bu(t) =0 , (1.3)
1 [ ] .
u(0) = u, 6 (a’2), a(0) = w, 68 , (1.4)

where A 1is a positive definite self-adjoint operator with dense domain

D(A) in a real Hilbert space H, B is a bounded linear operator from D(Ayb)
to H, and p (the control) is again in LY(10,T); R). We suppose A~! is
compact and A has simple eigenvalues A:, n=1,2,ses, Where

0 < A1 < Az <***, Then there exists a corresponding sequence {Qn} of
eigenfunctions: A’n = A:¢n, <¢n,¢m>H = smn where <°,'>H denotes the inner

product in H,
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While we could rewrite (1.3), (1.4) in first order form (1.1), (1.2) in
the usual manner of dynamical systems (see for example {1}, [2)) it is
preferable for our purposes to introduce a complex l.tructure similar to that
used for Hamiltonian systems.

Let H denote the complexified Hilbert space H ® iH with inner product
defined by

x, + 1y1, x, + iy2> = QKX F <Y YO, 1[<y1.x2>H - <x1.y2>nl

1"72°H

1 .
for X11X9:¥:¥9 € He Let z(t) = A/Zu(t) + iu(t)e Then (1.3), (1.4) becomes

] A
z(t) = Az(t) + p(t)ﬁz(t) ' (1.5)
1
z(0) = A/2u° +iu G H , (1.6)
A . 1/ A _]/
where A = -iA’2, B = -iBA™/2Re, and thus (1.3), (1.4) has been put in the
fom (1.1)' (102) with X 'Ho
Example, The rod equation with hinged ends.
Consider the system
et U oex * p(t:)umx = q, 0<x<1 , (1.7)
with boundary conditions
usuxxao at x = 0,1 , (1.8)
with initial conditions
u(x'O) = uo(x)' \lt(x,O) = u1(X), 0<¢<x <1 . (‘09)
In the notation of (1.3), (1.4) we have

a4 a®

= y B = »
ax4 ax?

A Hm= Lz(o,l), p(A) = {u € H"(o,n;

1 1
U, uxx 3 H°(0,1)}' D(Alz) - H2(0'1)n H;(O")' Aﬂ = nz'.z'

’n. 2 sin nfx, n = "2'00. .

Here p(t) represents the axial load on the rod.
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2. The control problem

Consider the system (1.1), (1.2). The controllability problem is
(P) Given h 6 X find p 6 L'([0,T]; R) so that the (generalized)
solution of (1.1), (1.2) with control denoted by u(t;p,uo) satisfies
w(‘r;p,ﬁlo) = h,
We note two important features of (P). First we observe that even though
{1.1) is a linear evolution equation in ® for fixed p the map u(T:',wo)

is in fact a nonlinear function of p : L‘([O,T]; R) *+ X. Secondly (and of

great importance for distributed systems) we see that (P) in fact asks us to
control a (generally) infinite dimensional system with controls p(t) in one-
dimensional real space for each t. The first observation means that our
analysis may likely resort to local theory (the inverse function theorem).

The second observation is more serious since it will generally imply the map
w(T;O,wo) s LF([O,T]; R) + C([0,T]; X) 1is compact for r > 1. More precisely
it was proved in [2).

Theorem 1. Let X be a Banach space with dim X =%, If < > T > 0 and

P, + p weakly in L‘([O,T]; R) then w(';pn,wo) + w(-;p,mo) strongly in

C([0,T); X). Moreover the set of states accessible from ®_ defined by

0

S(w,) = U w(t;p,0))
o 0 0

peLy__([0,%);R)
r>1

is contained in a countable union of compact sets of X, and in particular
has dense complement.

The proof of Theorem 1 is quite technical and is given in [2]. 1Its
importance in controllability of (1.1), (1.2) is readily seen, however. For

if the set of states accessible from Yo s(uo) has dense complement we shall




never be able to steer to an open neighborhood in X of “0' In other words

except for an exceptional set of h @ X (P) is ill-posed,

3. Identification of the accessible set for abstract "hyperbolic” bilinear

control systems.

Having noted in Theorem 1 the inability to control (t.1), (1.2) to any
open neighborhood of X, we turn instead to trying to identify what states
are accessible from a given wo € X. Specifically we consider the abstract
*hyperbolic” bilinear control system (1.3), (1.4).

As the basis {On} of H may be regarded as a basis of H, any z ¢ H
may be expanded as a Fourier series in the basis {On}. Hence we may write

»
z(t) = n& z (t)e . (3.1)
We assume in addition that
<B’n'¢m>ﬂ =0 for ngm (3.2)
and assume
<B¢ o8O, - b #O . |
Then substitution of (3.1) into (1.5) yields the infinite system of ordinary

differential equations

b
d n
zn(t) = -iknzn(t) - ip(t) };-Re zn(t), n=1,2,s0, (3.3)
with initial conditions
zn(O) il PR T <z(o).¢n> . (3.4)

In itself (3.3) is not much of an irprovement over the earlier
formulations of our problem in that the map p * {z(T;p,2(0))} from
L¥((0,T); R) into (the natural state space for (3.3), (3.4)) C(10,T); 22)
is still compact (now for r ? 1). However (3.3) allows us to make the

remarkable change of variables
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An zn(t) bn
Cn(t) i { = exp 1(Xnt +3rP(t)) - 1) (3.5)
n On n

where P(t) = I; p(s)ds .
A straightforward computation shows that {Cn(t)} satisfies the

equations

. (t) 2on (°n = bn
() =3 B2 R (f2T (£) + 1)expl2i(d ¢ + 51 P(E)) (3.6)
Oon n n

Cn(O) =0, n = 1,2,¢e00 (3.7)

where we assume Zon # O.

It is not hard to show (3.6), (3.7) has a solution
{t_(tsp)} 6 C(10,T]; %,) which is ¢! in p as a map from L2([0,T}; R) to
12. The amazing thing is that this map is not compact. Hence we may attempt
to control (3.6) in a neighborhood in 12 of the initial state {0}. The
natural way to do this is, as remarked earlier, to apply the inverse function
theorem and show DP{;n(-r;O)} (the Frechet derivative of {cn('l‘:p)} with
respect to p evaluated at p = 0) is anlisomorphism from L2([0,T]; R) ¢to
22. Actually this won't be the case since Dp{tn(T;O)} isn't one to one but
it is onto. Fortunately the “local onto theorem” {3] will still imply the
non-unique solvability of Cn(T;p) = hn' n=11,2,3,¢¢¢ for some T > 0 and
p 6 L2({0,T); R) when .{hn}'z is sufficiently small. Now knowing the
accessible states of (3.6), (3.;) is an open neighborhood of {0} in lz we
can translate back via (3.5) to find the accessible states of (3.3) from data
(3.4).

For example for the rod equation with hinged ends (1.7), (1.8)
<B¢n,¢m>H = 0 and assumptions (3.2) are satisfied. In fact we can prove

Theorem 2. Assume 2, # 0 for the rod equation with hinged ends (1.7),

(1.8)s Then there exists € > 0 8o that if l{hn}l‘ < € we can solve
2




2
2@ =00 +hz,, ne=1,2...

for infinitely many p ¢ Lz([O. %}) R) with (2)' p(t)dt = 0.

Thus while we cannot hit all states in a small "2 neighborhood of

{zm} we can hit those of the form {(1 + hn)zm}, l{hﬂ}l'.2 < €. Of course

using the definition of 2z this result could be translated into a statement L

(albeit messy) regarding u and u, for (1.7), (1.8), (1.9). Furthermore

using the above local result we can use a standard argument to prove

Corollary. For (1.7), (1.8) with 2z, ¥ O n = 1,2,... the set of states

accessible f;t {zOn} is dense in H.
.
? ]
.
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